37 research outputs found

    Models of Academic Pursuits

    Get PDF
    The article analyses formal and informational models of pursuits, offered by Russian scientists, including the author and the possibilities of their use in teaching proces

    All-Atom Molecular Dynamics Simulations of Whole Viruses

    Get PDF
    Classical molecular dynamics modeling of whole viruses or their capsids in explicit water is discussed, and known examples from the literature are analyzed. Only works on all-atom modeling in explicit water are included. Physical chemistry of the whole system is the focus, which includes the structure and dynamics of the biomolecules as well as water and ion behavior in and around the virus particle. It was demonstrated that in most investigations molecular phenomena that currently can not be studied experimentally are successfully reproduced and explained by the simulations. These include, for example, transport and distribution of ions inside viruses that ultimately connected to their stability, the hydrodynamic pressure in the capsid related to viruses’ elastic properties, the role of metal ions in virus swelling, and others. Current and future tendencies in the development of all-atom virus simulations are outlined

    Details of charge distribution in stable viral capsid

    Get PDF
    We present the results of Molecular Dynamics simulations of a viral capsid with the aim to analyse ion distribution on the capsid's surface that defines its stability. Two systems were modelled, a stable capsid with neutralising number of ions and an unstable capsid with low number of ions. For the ion distribution analysis the capsid's structure was identical and fixed in both simulations. It was then released for the stability analysis. The ion distribution demonstrated two types of the local regions on the inner surface of the capsid's wall: highly occupied with chloride ions in both systems despite a largely uniform electrostatic potential everywhere on the surface, and the regions that loose almost all chloride ions in the unstable capsid. The latter regions are located close to the cracks that are formed when the capsid is destabilised and thus could initiate the collapse of the capsid

    Reading science - учебное. пособие.

    Get PDF
    Предлагаемое учебное пособие предназначено для студентов естественнонаучных направлений: геология, геофизика, геология, геохимия нефти и газа и др. Основная цель пособия познакомить студентов с материалами учебно-профессиональной сферы. Разделы пособия включают тексты, содержащие профессиональную терминологию, а также задания и упражнения, способствующие формированию навыков говорения в рамках профессионального общения.14

    All-atom molecular dynamics simulations of entire virus capsid reveal the role of ion distribution in capsid’s stability

    Get PDF
    Present experimental methods do not have sufficient resolution to investigate all processes in virus particles at atomistic details. We report the results of molecular dynamics simulations and analyze the connection between the number of ions inside an empty capsid of PCV2 virus and its stability. We compare the crystallographic structures of the capsids with unresolved N-termini and without them in realistic conditions (room temperature and aqueous solution) and show that the structure is preserved. We find that the chloride ions play a key role in the stability of the capsid. A low number of chloride ions results in loss of the native icosahedral symmetry, while an optimal number of chloride ions create a neutralizing layer next to the positively charged inner surface of the capsid. Understanding the dependence of the capsid stability on the distribution of the ions will help clarify the details of the viral life cycle that is ultimately connected to the role of packaged viral genome inside the capsid

    Training of judiciaries and the effectiveness of the judicial system in Russia

    Get PDF
    The article examines the theoretical, legal, social and psychological aspects of the formation of a highly effective judiciary in Russia on the basis of a systematic approach in the preparation and selection of personnel for the judicial system. The authors substantiate the most significant tasks of forming the professional identity of Russian judges based on social and psychological research, practical experience of legal personnel, information educational technologies, and analyze the results of assessing the effectiveness of the Russian judicial system according to European standards. When writing the article, general scientific and special research methods were used: structural and functional analysis, comparative legal and analytical methods. The research carried out by the authors made it possible to obtain the following results: to form a comprehensive idea of the identity of a judge based on the concepts of self-esteem, behavior control, communication characteristics and social abilities. It is possible to use these results in the academic process of educational institutions of secondary vocational education and higher education, in the selection of personnel and social and psychological support for the activities of judges and employees of the judicial apparatus. The importance of such studies is associated with the high social significance of this type of activity, its impact on the level of social trust in law and legality

    A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning

    Get PDF
    Owing to its high conductivity, graphene has been incorporated into polymeric nanofibers to create advanced materials for flexible electronics, sensors and tissue engineering. Typically, these graphene-based nanofibers are prepared by electrospinning synthetic polymers, whereas electrospun graphene-biopolymer nanofibers have been rarely reported due to poor compatibility of graphene with biopolymers. Herein, we report a new method for the preparation of graphene-biopolymer nanofibers using the judicious combination of an ionic liquid and electrospinning. Cellulose acetate (CA) has been used as the biopolymer, graphene oxide (GO) nanoparticles as the source of graphene and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as the ionic liquid (IL) to create CA-[BMIM]Cl-GO nanofibers by electrospinning for the first time. Moreover, we developed a new route to convert CA-[BMIM]Cl-GO nanofibers to reduced GO nanofibers using hydrazine vapor under ambient conditions to enhance the conductivity of the hybrid nanofibers. The graphene sheets were shown to be uniformly incorporated in the hybrid nanofibers and only 0.43 wt% of GO increase the conductivity of CA-[BMIM]Cl nanofibers by more than four orders of magnitude (from 2.71× 10−7 S/cm to 5.30 × 10−3 S/cm). This ultra-high enhancement opens up a new route for conductive enhancement of biopolymer nanofibers to be used in smart (bio) electronic devices
    corecore